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SUMMARY OF MAXIMUM THEORETICAL ACCURACY OF
RADAR MEASUREMENTS

INTRODUCTION

The parameters of a radar target determune how the transmitted waveferm is modified
by the target to produce a reflected waveform. During a short time interval the target is com-
pletely characterized by several parameters: cross section, range, radial velocity, angular
positicn, and (if necessary) angular rate and radial acceleration. Once the target has been
detected, the signal energy received across the antenna aperture may be processed to form
an estimate of the target parameters. We assume that the received waveform has been cor-
rupted by additive white Gaussian noise. An optimum estimation method for measuring the
target parameters is the method of maximum likelihood. This method can be implemented in
the case of additive white Gaussian noise by selecting the peak output from a set of filters
where each fiiter is matched 1o a sct of parameter vaiues. There is one filter for each es-
sentially different combination of parameter values, The accuracy available from the maxi-
mum likelihood method depends not only on the relative strength of signal and noise at the
receiver, but also on the shape of the antenna aperture and the character of the transmitted
waveform. This report contains the accuracy formulas which have been derived. Free space

propagation is assumed throughout,

The transmitted waveform, denoted x(t), is related to its Fourier transform X(f) by

x(t) = f: Xt dr, X0 awe i at 1)

We make the following definitions:
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where E is called the signal energy (assumed finite), ty is the mean time of arrival of the

signal, and fy is thc mean frequency of the signal. Tl:en we can define:
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where 8 and A are called the effective bandwidth and the effective time duration of the
signal, respectively. Ny is defined as the noise power per cycle at the receiver, i.e., Ny is
the average noise power at the output of a filter with a one-cycle-wide passband. The quan-
tity R is defined by

R=N, 0

R chatacterizes the detectability of a known signal in the presence of white Gaussian noise
and is exactly the peak signal-to-noise ratio available at the output of a matched filter (ref-
erence 1). For good signal detectability, R must be fairly large (of the order of 50). The
accuracy formulas summarized here depend on the assumption that R is large and that

ambiguities are not present.

RANGE ACCURACY

Assume that range is the only unknown target parameter, Provided that the eavelope of
the autocorrelation function of the transmitted waveform can be approximated by a parabola
near the origin, the error in the estimation of the time of arrival of the reflected signal is

normally distributed with standard deviation 3, given by (references 2 and 3)

1
5‘ =ﬁ\_]“r~R : (5)

The cotresponding rms error 8, in the estimation of range is

2BVR ©

where c is the velocity of light.

When the transmitted signal has a rectangular envelope, 8 is infinite and the above
formula is not valid. It appears that an exact range accuracy formula for this situation is not
simple to obtain. Using an approximate analysis, however, the following formula has been
derived for a rectangular pulse of sinusoid with duration T (teference 4),

_Ver _Ss _ T
8, = R or 3,—28t—\/2—ﬂ 7
Rough numerical confirmation of this formula has been obtained. Since R is proportional to
the product of the peak signal power and T, we have the intuitively obvious result that 8, for

a rectangular pulse depends only on the peak power of the pulse and not on the pulse length.




VELOCITY ACCURACY

Assume that radial velocity is the only unknown parameter of the target. Provided that
the envelope of the autocorrelation function of the transmitted waveform, considered as a
function of doppler shift, can be approximated by a parabola near the origin (a condition
which is usually satisfied), the error in estimation of frequency is normally distributed with

standard deviation 8, given by (reference 4)

1
¢ = AV (8
The corresponding rms error 8, in the estimation of radial velocity is
As A
8,,:28,_21\\/5{ 9)
where the wavelength A = c/f,.
For the particular case of a rectangular pulse of duration T, A = 7T/\/3 and
y3A (10)

O = 30TV

COMBINED RANGE AND VELOCITY ACCURACY
Assume that both range and radial velocity are unknown target parameters. Provided

that the autocortelation function of the transmitted waveform, considered as both a function
of time delay and doppler shift, is well behaved in the manner indicated earlier (this rules

out rectangular pulses), we can derive the following expressions for 8, and &, (reference 4),

5,7~ Ra?
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where A, is a quaatity which is indicative of the correlation between the errors in measure-
ment of time of arrival and the errors in measurement of frequency. The larger A, is, the
larger are the errors 5, and 8;. A, is large when the radar waveform is linearly frequency

modulated (in one direction only). A1g = O for any waveform which has a center of symmetry.

In the situation of most frequent interest where A, = O, the above expressions for 5,
and &, reduce to those which were stated earlier (Eqs. 5 and 8). We see, therefore, that the
tms error in the estimation of one of the parameters is not influenced by the lack of knowl-
edge about the other parameter. Generally, the presence of additional unknown parameters

can do nothing but increase the error in estimation of any particular parameter. When the




parameter in question is not ““coupled’’ to any of these unknown parameters, however, thers

is no increase in this error,

The lack of coupling between the measurement of target parameters can be extremely
useful because it allows us to calculate the rms error in the estimation of each of the param-

eters separately while ignoring the others. Of the following set of target parameters

. cross section
range

radial velocity
radial acceleration

angle of arrival

S os W

angular rate

it has been necessary in the derivation of the formulas presented in this paper to include

only couplings hetween the pairs (2, 3) and (2, 4).

ANGULAR ACCURACY

We assume that the reflected waveform from a target arrives across an antenna aperture
and that the unknown angle of arrival is approximately normal to the plane of the antenna
aperture. The aperture need not necessarily be simply connected, e.g., it may consist of two
or mote disjoint coplanar areas. It is assumed further that the aperture is large compared to
a wavelength but that the maximum difference of time delay from the target and any two points
in the aperture is small compared to 3°! (the reciprocal bandwidth) of the reflected signal.
This latter assumption will be satisfied by signals which are sufficiently narrowband and it
insutes that angular information is not being derived from coarse range information. The
assumption also insures that the estimate of angle of arrival will be uncoupled from the esti-

mates of other target parameters.

From the phase and amplitude information available from the aperture in the presence
of receiver noise (and perthaps uniformly distributed background noise), we can form a maxi-
mum likelihood estimate of the angle of artrival. The angle of arrival can be represented by
two numbers, the components of the angle of arrival measured in each of two reference planes
perpendicular to each other and to the plane of the antenna aperture. For apertures of arbi-
trary shape, the errors in the two measurements will generally be coupled together, but this
coupling can be eliminated by choosing the reference planes along the principal axes of the
aperture. With this step, the estimate of each component of the angle of arrival is reduced
to a one-parameter estimation problem. We assume in what follows that this reduction has

been made.




Let £ and 7 be the Cartesian coordinates of a point in the aperture. These coordinates
are chosen to lie along the principal axes ot the aperture with its centroid as origin. Denote

the aperture area by 8, Then the rms length of the aperture in the £ direction, Qf, is defined
£y = 20| feras ay]” 12)
£=47s n

f,, is defined similarly. Note the similarity of these definitions to the definitions of 8 and

A (Eq. 3). The general expression for the rms error 89{ in estimating the angle of arrival

0‘5, measured in the plane parallel tc £, is given by*

80£ = E;:T‘R— (in radians) (13)

An equivalent result holds for the n plane. We shall find it convenient to drop the subscripts
¢ and 7 and write simply

' A
%o R a

where it is assumed that £ will be measured in a direction parallel to the plane in which
0 is defined.

It ic useful to adapt Eq. 14 to spccial cases. For a rectangular aperture of length L,
£ =aL/\/3 and

. ﬁ_(}_\)
8g= VR AL (15)
For a citcular aperture of diameter D, £ = 7D/2 and
2 (A
%+ 143 (b) (6

For an interferometer system in which the aperture consists of two equal coplanar areas
separated by a distance NA, which is large compated to the linear dimensions of each aper-

ture, we have £ = #NA and

5 a7

1
0= aNVR
The measurement of @ for the last situation, though it may be very accurate, will usually

be highly ambiguous.

* The proof of this formula is indicated In reference 5.. See also Eq. 30 of refsrence 6.




FURTHER ESTIMATES OF TARGET PARAMETERS FROM SETS OF RADAR
MEASUREMENTS

Consider the following genetal problem. We are given a function of time #(t) which
depends on two unknown parameters y; and yj.

Z(t) = y1 + yat (18)

Suppose that we have a series of n (n>>1) equally spaced measurements of Z#(t), each of
which is perturted by an independent, normally distributed noise with variance g2. The time
otigin t = O is taken at the center of the measurement interval. (This assumption is made
throughout this section.) Then, parameter estimation theory shows that the estimates of y,
and y; are uncoupled and have normally distributed errors with standard deviations 8y, and

Sy, given by

, o o 2/3a
oyl = \/—E' Oy2 ==V1ﬁ“‘ (19)

where T in these formulas denotes the lime duration of the measuring interval (reference 7).

The more general problem
’Z(t) =Y+ Yt + )'3t2 (20)

is also of intetest. For this problem, the theory tells us that the estimate of y; is uncoupled

to the estimate of y; or y3, but that the estimates of y, and y; are coupled together, and

30_
8),1 = ?\/ﬂ‘
2y/3.
By, = \/E’l(‘, 21
_ 6\50
3= " JnT?

where as before T denotes the time duration of the measuring interval (reference 7).

We are now ready to apply these results to the problem of combining sets of inde-

pendent, equally spaced radar measurements,
Suppose the range of a target over a short interval of time can be written

t(t) = ro + vt + Yat? 22)




where the parameters ro, v, and a are unknown. Suppose also we have a series of n inde.
pendent, equally spaced measurements of range over a time T, each with mms error &, given

by Eq. 6. Combining Eqs. 6 and 21, we have

3c
& = i
' apvnR
5, - V3¢
T (23)

5 = 6v/5¢c
" BT’;;nm

In these last two expressions for 8, and &, it is instructive to use (in place of 3) the ef-
fective bandwidth of the signal taken about zero frequency as reference, i.e., calculate 8 in
Fq. 3 with fg = 0. We shall call this bandwidth 3. For narrowband signals, 8¢ ~ 27fy. The
range accuracy corresponding to the bandwidth 3y corresponds to the ‘‘fine structure’’ infor-
mation in the signal obtained from a measurement of carrier phase (reference 2), The range
nccuracy from this fine structure information is usually quite accurate, but is also highly
ambiguous. These ambiguities do not imply that fine range information is elways useless
however, because it may be possible to combine sets of ambiguous range measurements to
obtain non-ambiguous estimates of v and a by virtue of a priori information about v and a.

Replacing /3 by 2nf, in Eq. 23 gives

Y 2ﬂTVhﬂ
3VSA @0
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A determination of whethe: ambiguities exist in the above method of estimating v and a will

require special consideration for the application at hand.

Using a procedure similar to the one outlined in this section, one can derive expres-
sions for the accuracy in estimating velocity and acceleration from a series of independent

equally spaced measurements of velocity, each with rms error 8. The results from Eq.19 are

Sy
Voo

5, = 232
T

8, (Total) =
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Consider now the important problem of estimating angle of errival and the rate of
change of the angle of arrival, Over the measurement interval of interest, we assume that the

angle of arrival # may be approximated by
0=0q+ wt (26)

where 0p and w are unknown parameters to be determined. Proceeding as before and using
Eq. 14 in Egs. 19, we have

PO N
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£ can of course be specialized to various cases of interest. For the case of the interferom-

@7
o

eter considered carlier, we recall that £ = aNA and

2y3
- 28
@ aNTVnR @8

Note that the quantity n® corresponds to the total received energy at both apertures, Though
the measurement of t/g with the interferometer is usually highly ambiguous, our a priori knowl-
edge about the maximum value which « can have may, in certain situations of interest,

eliminate the ambiguities in the estimation of w,
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